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Exact discrete compactlike traveling kinks and pulses inf4 nonlinear lattices
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We show that by properly choosing the analytical form of a solitary wave solution of discretef4 models we
can calculate the parameters of the potential which allow the propagation of compact~kink and pulses!
solutions. Our numerical simulations show that narrow kinks and pulses with finite extent can propagate freely,
and that discrete breathers with finite but long lifetime, can emerge from their collisions. Moreover, our
numerical simulations reveal that the propagation of two successive pulses at a relative distance of two lattice
spacings propagate freely, i.e., without interaction.
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I. INTRODUCTION

In recent years, the dynamics of kinks in Hamiltoni
~nondissipative or Klein-Gordon! systems@1# has attracted
considerable attention. It becomes clear that continu
propagation equations with linear coupling provide an in
equate description of the behavior of weakly coupled latti
where the interplay between nonlinearity spatial discreten
can lead to effects not present in the continuum models.
instance, lattices such as ferromagnetic chains@2#, hydrogen
bonded chains@3#, or chains of base pairs in DNA@4#, kink
solitons, or domain walls, whose width is of the order o
few lattice spacings, may be pin in the lattice owing to d
creteness effects. On the other hand, classical equa
which describe the behavior of the previously cited syste
possess extended spatial solutions that may be incorrect
a physical point of view.

In order to gain an understanding of wave motion in d
crete systems, where exact results are scarce even in
dimension both for linear and nonlinear interaction, it is d
sirable to investigate lattice models with exact solutions.
this direction, Schmidt@5# pointed out that if a double-wel
on-site potential of af4 model is suitably chosen, the sing
kink soliton becomes an exact solution of the discrete mo
Recently,@6,7# the general problem was considered of fin
ing kink- or pulse-shaped traveling-waves solutions se
rately in the conservative and dissipative case with a lin
interaction coupling, giving place to infinite extent solutio
~tanh shaped!. However, observed patterns in nature whet
stationary or traveling are of finite extent. Indeed, it w
recently shown by Rosenau and Hyman@12–14#, that
solitary-wave solutions may compactify under the influen
of nonlinear dispersion which is capable of causing de
qualitative changes in the nature of nonlinear phenome
Such robust solitonlike solutions, characterized by the
sence of an infinite tail or wings and whose width is veloc
independent, have been called compactons@14–16#. One
might therefore wonder if it is possible to construct a discr
model including nonlinear coupling, allowing the propag
tion of compactlike wave fronts and pulses.
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The purpose of this paper is to make some progress in
understanding of the effects of discreteness and nonlin
interactions on the dynamical behavior of one-dimensio
nonlinearf4 lattices.

The paper is organized as follows. First, we present
specific lattice model and show analytically that it can adm
exact compactlike kink solutions if parameters of thef4 po-
tential is adequately chosen. Then, in Sec. III, we study
merically the propagation and the collisions of such co
pactlike kinks and antikinks, in the discrete case and in
continuous limit. In Sec. IV, we show that compactlik
pulses may be solutions of our system. In Sec. V, we st
their propagation and their collision. Finally, Sec. VI is d
voted to concluding remarks.

II. MODEL AND EQUATION OF MOTION

We consider a lattice model where a system of atoms w
unit mass are coupled anharmonically to their nearest ne
bors and interact with a nonlinear substrate potentialV(un).
The Hamiltonian of the system is given by

H5(
n

S 1

2
u̇n

21
K

~g11!
~un112un!g111V~un! D , ~1!

whereun is the scalar dimensionless displacement of thenth
atom. ConstantsK andg are, respectively, the stiffness cou
pling term and the strength interaction law between near
neighbors atoms. In the specific caseg53 ~which will be
considered in this paper!, the corresponding equation of mo
tion of thenth atom is

ün5K@~un112un!32~un2un21!3#2
dV~un!

dun
. ~2!

Let us introduceun5u0 cn , where u0 is a constant, and
settingv0

25K u0
2, andV0

251/u0 , Eq. ~2! becomes

c̈n5v0
2@~cn112cn!32~cn2cn21!3#2V0

2F~cn!. ~3!

Finally, dividing the two members of Eq.~3! by v0
2, and

settingt85v0t ~dimensionless time!, andG5V0
2/v0

2, we get
©2002 The American Physical Society19-1
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d2cn

dt2
5@~cn112cn!32~cn2cn21!3#2GF~cn!. ~4!

Assuming that, a traveling compactlike kink or compact
solution has the following kink shape:

cn5sin~s!, if sP@2p/2,1p/2#,

cn521, if sP] 2`,2p/2@ , ~5!

cn511, if sP] 1p/2,1`@ ,

where s5vt82kna. Here, a is the lattice spacing, andv
andk are two constants such that the ratiov/k represents the
velocity of the front wave. Contrary to the linear couplin
models proposed@5–7# for the description of the dynami
behavior of such systems, where the tanh-shaped wave-
solution extends asymptotically to infinity, solution~5! has
the advantage to taking into account the finite spatial ex
of a physical or real wave front. Now, following an invers
procedure, we first insert Eq.~5! in Eq. ~3!, in order to cal-
culate the expression ofF(cn). Thus,

d2cn

dt2
52v2cn . ~6!

~cn112cn!35@sin~s2j!2sin~s!#3

3~sins cosj1sinj coss2sins!3, ~7!

~cn2cn21!35@sin~s!2sin~s1j!#3

3~sins2sins cosj2sinj coss!3, ~8!

with j5ka. SettingA52sinj coss andB5sins(cosj21),
the cubic difference becomes

D5~cn112cn!32~cn2cn21!352B~B213A2!. ~9!

That is,

D52~t21!2cn@4~t11/2!cn
223~11t!#, ~10!

with t5cos(j). Using the previous expressions we dedu
that the substrate force is

F~cn!5
1

G ~acn1bcn
3! , ~11!

with

a5v226~t11!~t21!2, and

b58~t11/2!~t21!2. ~12!

Finally the total equation becomes

d2cn

dt2
5@~cn112cn!32~cn2cn21!3#2bcnS cn

21
a

b D .

~13!
04661
nt

nt

e

This last equation presents af4 substrate potential structur
given by Eq.~14! with two degenerated minima if the rati
a/b is negative andb.0 ~see Fig. 1!.

V~cn!5bS cn
4

4
1

a

b

cn
2

2 D . ~14!

Since we have assumed that the solution of Eq.~13! has the
form ~5!, the two minima must be located, respectively,
cn521 and cn511, which corresponds to a ratioa/b
521. This, gives us the existence condition of our comp
kink solution, and then define the value of parameterv, for a
fixed constant discrete parametert or reciprocally, which
define a bound forj5ka. Therefore, the wave-front velocity
is then given by

Vf5
A2~12t!3

arccos~t!
5

A2@12cos~ka!#3

ka
5

A2@12cos~j!#3

j
.

~15!

We note that, the velocity of the wave front is associated
discrete parameterka.

III. NUMERICAL RESULTS: FRONT DYNAMICS

A. Compactlike kink propagation

We have checked by numerical simulations that an ex
discrete compact kink solution given by Eq.~5! can propa-
gate freely, that is without experiencing any discreteness
fects for the parameter rangeka<p/3. From this value on,
some discreteness effects appear owing to the fact that
very difficult to describe a sine function only with thre
points or two lattice spacing@see Fig. 2~a!#. Figures 2~a! and

FIG. 1. Symmetric potentialV(cn), with its two degenerated
minima. The shape is obtained with the parameterst5cos(p/3) and
v50.5. The dashed line represents the asymmetric oscillation
the central particles of the breather~with an amplitudedcn max
52.1! created by the kink-antikink collision.Emax represents the
maximum of energy of the particles during the oscillations wh
E050.5 is the barrier height.
9-2
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2~b! show the spatiotemporal dynamics of compactl
kinks, respectively, forka5p/2 andka5p/8.

One can remark@Fig. 2~a! ~discrete parameterka5p/2!#
that kink velocity decreases strongly with time until reachi
a speed limit corresponding to a solution which is different
the predicted one. This means that there exists other e
compact solutions in such a system. Indeed, as shown in
2~c!, the profile of this numerical solution is also a compa
like solution of Eq.~13!.

Unlike the very discrete case discussed previously, k
compacton with discrete parameterka5p/8 propagates
freely, i.e., without emission of radiation, thus confirming t
exact character of solution~5!. Figure 2~d! shows the profile
solution after a timet8520 ~expressed in arbitrary units!.
This profile is identical to high accuracy to the initial cond
tion. A systematic investigation of the velocity and the em
sion of radiation reveals that the critical value of parame
ka over which a solution of type~5! radiates and conse
quently reduces its velocity iska5p/3.

Note that this value of discrete parameter (ka5p/3) al-
ready corresponds to a very discrete situation, since the
struction of the corresponding solution requires only th
lattice spacings.

B. Breather generation

We have also studied the possible generation of nonlin
localized modes or compactlike breathers via kink~K! and
antikink (K̄) collisions, respectively, in the discrete and co
tinuous regime. This interesting type of nontopological ex
tation appears in a large variety of nonlinear lattices and t
existence related to energy localization@8–11#. Here, we
studied numerically aK-K̄ collision in the discrete (ka
5p/3) and the continuous limit (ka5p/8) cases, respec

FIG. 2. Compact kinks propagation and shape:~a! Spatiotempo-
ral evolution for a solution with discrete parameterka5p/2. ~b!
Spatiotemporal evolution for a solution with discrete parame
ka5p/8. ~c! Structure of the solution after a timet8520 ~ex-
pressed in arbitrary unit! for discrete parameterka5p/2. ~d! Struc-
ture of the solution after a timet8520 ~expressed in arbitrary unit!
for discrete parameterka5p/8.
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tively. First, in the discrete case the two entities travel w
velocity vf.0.478 cells21 and 2vf , respectively. As
shown in Fig. 3~a!, a discrete stationary breather and sm
amplitude nonlinear oscillations background emerge fr
the weakly inelasticK-K̄ collision. The asymmetric breathe
amplitude oscillations~see Fig. 1! decrease slowly with time
@see Fig. 3~c!#. Although the breather appears to be stab
after time t560 (a.u.), the breather sink to chaotic oscill
tions of small amplitude. Nevertheless, in spite of these w
nonlinear radiation losses~which propagate away!, this dis-
crete breather has a significant lifetime and presents a g
ine physical interest. Note that the interaction between th
two compact entities is very different compared to the c
of tanh-shaped or spatially extended solutions which inte
at long distances. Indeed, their collision may be compare
that of two hard spheres, i.e., without long distance inter
tion.

IV. COMPACTLIKE PULSE SOLUTIONS

As seen in Sec. II, solutions of Eq.~13! are strictly local-
ized sine functionscn56sin(s) defined on intervalsP
@2p/2,1p/2#, and 61 otherwise@see Fig. 2~d!#. Taking
into account the symmetry of these previous solutions
straightforward calculation shows that

r

FIG. 3. ~a! Creation of a discrete stationary breather with no

linear oscillation background generated by aK2K̄ collision. The
oscillations of the central particle are asymmetric with an amplitu
dcn max52.1 ~see Fig. 1! and a periodTB50.7 (a.u.).~b! Breather
amplitude decreasing versus time~in arbitrary unit!.
9-3
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cn5~21!l cos~s!, if sP@2p,1p#,

cn5~21!l11, otherwise, ~16!

are also solutions of Eq.~13!. The parameterl is an integer
equal to zero or one. Ifl50 the solution corresponds to
bright type compactlike pulse~see Fig. 4~a!!, and ifl51 the
solution corresponds to a dark type compactlike pulse@see
Fig. 4~b!#. Note that the pulses velocity is also given by E
~15!. Therefore, in the following, each pulse will be asso
ated with discrete parameterka.

V. NUMERICAL RESULTS: PULSE DYNAMICS

A. Compactlike pulse propagation

We have checked numerically the stability of the solutio
given by Eq.~16! and their exact discrete compact charac
for discrete parameterka<p/3. As shown in Figs. 5~a! and
5~b! the solutions propagate freely, that is without emiss
of radiation or nonlinear oscillations. Likewise with the fro
dynamics, a systematic investigation of emission of radiat

FIG. 4. Pulse shape solutions of Eq.~13! Left: a bright type
compactlike pulse, corresponding tol50 in Eq.~16!. Right: a dark
type compactlike pulse, corresponding tol51 in Eq. ~16!. Both
solutions have discrete parameterka5p/8.

FIG. 5. ~a! Pulse propagation for discrete parameterka5p/3
~width: six lattice spacings!. ~b! Pulse propagation for discrete pa
rameterka5p/8 ~width: eight lattice spacings!.
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and velocity, reveals that the critical value of the discre
parameterka over which a solution of type~16! radiates or
emits nonlinear oscillations iska<p/3. Note that, from a
numerical point of view, it is very important to describe co
rectly the horizontal asymptote on the pulse top~when ka
.p/3!. Indeed, nonlinear oscillations occur if this conditio
is not respected. The specific case~not shown here!, corre-
sponding to a discrete parameterka5p/2, leads to an un-
stable pulse, that tends to widen along the propagation u
it reaches a stable width. This pulse is then composed of
complementary fronts (K-K̄) as seen in Sec. III@see Fig.
2~c!# and traveling in the same direction. The final wid
after widening is equal to 17 lattice spacings. This effe
stems from the fact that it is very difficult to define a sin
function and its horizontal asymptote with only three poin
or two lattice spacings. Therefore, to obtain and propag
compactlike pulses in a such system, it is necessary to de
the solution on six lattice spacings at least, as well as de
correctly its horizontal asymptote.

B. Compactlike pulse collisions

As in Sec. III, we have investigated the collisions betwe
two pulses in the discrete regime and in the continuous lim
As shown in Fig. 6, in the two cases, the collision leads t
localized mode, and to counter propagating compact
kinks @see Figs. 6~a! and 6~b!#. In the discrete regime this
mode is unstable@see Fig. 6~a!#. Indeed, its interaction with
the nonlinear oscillation background splits it in two mod
which move erratically and disappear in small amplitu
chaotic oscillations.

On the other hand, in the continuous limit@see Fig. 6~b!#,
the generated mode is very stable in amplitude, time,
position, and therefore presents a physical interest. Mo
over, we have verified that two adjacent pulses spaced of
lattice spacing can propagate freely, that is without any
teraction. A systematic study reveals that the discrete par

FIG. 6. Compactlike collision.~a! Collision between two pulses
in discrete regime: discrete parameterka5p/3. ~b! Collision be-
tween two pulses in the continuous limit: discrete parameterka
5p/8.
9-4
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eter must be lower thanp/3. Indeed, for values higher tha
this critical value, any interactions occur between the t
successive pulses because of the nonlinear oscillation b
ground that is generated during the propagation by the
ceedingly discrete solutions.

VI. CONCLUDING REMARKS

We have explored the dynamics of af4 lattice model with
nonlinear coupling interaction between nearest-neighbor
oms. We have first shown that by properly choosing the a
lytical form of a discrete solitary wave or compactlike sol
tion of the model we can calculate analytically th
parameters of thef4 potential. The compactlike kink solu
tions are sine shaped and therefore strictly localized, tha
without wings or tails. We have checked numerically th
discrete compactlike kink~antikink! solutions can propagat
freely without experiencing any discreteness effects if
discrete parameterka is lower or equal top/3. Kink-antikink
collisions reveal that static breather with finite but wi
physically interesting lifetimes can be generated. Moreo
we have shown that compactlike pulses can also be solut
of such systems, and also propagate freely. Their collisi
are pseudoelastic and give birth to localized modes which
ys
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unstable in the discrete regime, but very stable in the c
tinuous limit, and consequently are able to play a role
physical processes. We have also studied, but not prese
the propagation of two consecutive pulses spaced of two
tice spacing and seen that no interaction between them
curs if the discrete parameterka is smaller thanp/3. We
would like to point out again that our model and results a
relevant for physical systems in which lattice discretenes
important. Obviously, further studies are necessary espec
by including a linear coupling and a dissipative term, to d
termine all the properties of these compactlike kinks a
pulses with exceptional mobilities. In conclusion, we belie
that the understanding of discrete nonlinear models is
active and attractive topic of the current research. Since
alistic physical systems are rather complicated, it is
tremely important to develop the basic concepts with help
simple lattice models with exact solutions.
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