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Exact discrete compactlike traveling kinks and pulses ing* nonlinear lattices
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We show that by properly choosing the analytical form of a solitary wave solution of dissfetedels we
can calculate the parameters of the potential which allow the propagation of cofkpdctand pulses
solutions. Our numerical simulations show that narrow kinks and pulses with finite extent can propagate freely,
and that discrete breathers with finite but long lifetime, can emerge from their collisions. Moreover, our
numerical simulations reveal that the propagation of two successive pulses at a relative distance of two lattice
spacings propagate freely, i.e., without interaction.
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I. INTRODUCTION The purpose of this paper is to make some progress in the
understanding of the effects of discreteness and nonlinear

In recent years, the dynamics of kinks in Hamiltonianinteractions on the dynamical behavior of one-dimensional
(nondissipative or Klein-Gordonsystems[1] has attracted nonlinears* lattices.
considerable attention. It becomes clear that continuous The paper is organized as follows. First, we present our
propagation equations with linear coupling provide an inad-specific lattice model and show analytically that it can admit
equate description of the behavior of weakly coupled latticegxact compactlike kink solutions if parameters of tfepo-
where the interplay between nonlinearity spatial discretenedéntial is adequately chosen. Then, in Sec. Ill, we study nu-
can lead to effects not present in the continuum models. Fanerically the propagation and the collisions of such com-
instance, lattices such as ferromagnetic chfishydrogen pactlike kinks and antikinks, in the discrete case and in the
bonded chain$3], or chains of base pairs in DNP], kink ~ continuous limit. In Sec. IV, we show that compactlike
solitons, or domain walls, whose width is of the order of apulses may be solutions of our system. In Sec. V, we study
few lattice spacings, may be pin in the lattice owing to dis-their propagation and their collision. Finally, Sec. VI is de-
creteness effects. On the other hand, classical equationoted to concluding remarks.
which describe the behavior of the previously cited systems
possess extended spatial solutions that may be incorrect from Il. MODEL AND EQUATION OF MOTION
a physical point of view.

In order to gain an understanding of wave motion in dis- We consider a lattice model where a system of atoms with
crete systems, where exact results are scarce even in oH8it mass are coupled anharmonically to their nearest neigh-
dimension both for linear and nonlinear interaction, it is de-bors and interact with a nonlinear substrate poteMai,).
sirable to investigate lattice models with exact solutions. InThe Hamiltonian of the system is given by
this direction, Schmidf5] pointed out that if a double-well
on-site potential of a* model is suitably chosen, the single
kink soliton becomes an exact solution of the discrete model.
Recently,[6,7] the general problem was considered of find-

ing kink- or pulse-shaped traveling-waves solutions sepawhereu, is the scalar dimensionless displacement ofrttie
rately in the conservative and dissipative case with a lineagtom. Constant& and y are, respectively, the stiffness cou-
interaction coupling, giving place to infinite extent solution pling term and the strength interaction law between nearest-
(tanh shaped However, observed patterns in nature whethemeighbors atoms. In the specific cage=3 (which will be

stationary or traveling are of finite extent. Indeed, it WwasSconsidered in this pap):’-r[he Corresponding equa’[ion of mo-
recently shown by Rosenau and Hymah2-14, that tion of thenth atom is

solitary-wave solutions may compactify under the influence

of nonlinear dispersion which is capable of causing deep dV(u,)
qualitative changes in the nature of nonlinear phenomena. Un=K[(Ups1—Up)3—(Up—Uupy_1)3]—
Such robust solitonlike solutions, characterized by the ab-

sence of an infinite tail or wings and whose width is velocity
independent, have been called compactphé—16. One
might therefore wonder if it is possible to construct a discret
model including nonlinear coupling, allowing the propaga- . ) s 5 )

tion of compactlike wave fronts and pulses. Yn= gl (Yn+1= )" = (n= ¢n-1)° 1= Q5F (¢n). (3

H:; %Uﬁ_*—%(uwrl_un)w—l‘l'v(un)i (1)

@

du,

Let us introduceu,=uq #,, Whereu, is a constant, and
settingwg=K uj, andQg="1/uy, Eq.(2) becomes

Finally, dividing the two members of Eq3) by w3, and

*Electronic address: comte@physics.uoc.gr settingt’ = wot (dimensionless timeandl’ =03/ w3, we get
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d2¢n . 5 1 T T
W:[(wmrl_wn) —(Un=a-0)°1-TF (). (4 osh
[
Assuming that, a traveling compactlike kink or compacton H
solution has the following kink shape: % 04 i\
E] 1)
: L i
Yn=sin(s), if se[—ml2,+m/2), R e
:;_ﬂ 0 i ‘\‘ ’,—-~~
Yo=—1, if se]l—oo,—ml2, (5 E oz : ' L7 A
E : “ l/ Eo
Yo="+1, if se]+mw/2,+ [, £ 041 i <X
-o.6f i
wheres=wt’ —kna. Here,a is the lattice spacing, an@d ! Sy max
andk are two constants such that the ratitk represents the -03F - - »>!
velocity of the front wave. Contrary to the linear coupling al— . . . . . .
models propose@5—7] for the description of the dynamic st s 0 0.5 1 15
behavior of such systems, where the tanh-shaped wave-fror.. Position , (arb. units)

solution extends asymptotically to infinity, solutigh) has
the advantage to taking into account the finite spatial extent .
of a physical or real wave front. Now, following an inverse
procedure, we first insert E@5) in Eq. (3), in order to cal-
culate the expression &f(,,). Thus,

FIG. 1. Symmetric potentiaV/(y,), with its two degenerated
nima. The shape is obtained with the parametersos(@/3) and
0=0.5. The dashed line represents the asymmetric oscillations of
the central particles of the breath@with an amplitudesy,, max
=2.1) created by the kink-antikink collisiorE ., represents the

5 maximum of energy of the particles during the oscillations while
d_‘g“ - wz% (6) E,=0.5 is the barrier height.
dt '

This last equation presents¢d substrate potential structure
(Yns1— tn)3=[sin(s— &) —sin(s)]® given by Eq.(14) with two degenerated minima if the ratio
. : - .
X (sins cosé+siné coss—sins)®, (7) o/ is negative ands>0 (see Fig. 1
3 ; ; 3 ‘ﬂﬁ o ‘ﬂﬁ
(Yn=a-1)"=[sin(s) —sin(s+¢)] V() =P 7+E7 . (14)
Since we have assumed that the solution of @8) has the
with é=ka. SettingA= —sin{coss andB=sins(cosé—1),  form (5), the two minima must be located, respectively, at
the cubic difference becomes ¥,=—1 and ¢,= +1, which corresponds to a ratia/3
5 5 5 ) =—1. This, gives us the existence condition of our compact
A= (1= n) = (¥n—¢n-1)"=2B(B°+3A%). (9)  kink solution, and then define the value of parametefor a
, fixed constant discrete parameteror reciprocally, which
That is, define a bound foé=ka. Therefore, the wave-front velocity
is then given by

X (sins—sins cosé—sing coss)®, (8)

A=2(r=1)%y[A(r+ 12 )2~ 3(1+ 7)], (10)

— )3 _ 3 _ 3
with 7=cosg). Using the previous expressions we deduce y/ — V2(1-7) = V2[1-codka)] = v2[1-cog¢)] )

that the substrate force is arccosr) ka &
(15
1 3 . . .
F(yn)=¢ ( apnt BYy), (11)  We note that, the velocity of the wave front is associated to
discrete parameteda.
with
Ill. NUMERICAL RESULTS: FRONT DYNAMICS
a=w’—6(r+1)(7—1)?, and o )
A. Compactlike kink propagation
B=8(7+1/2)(7—1)2. (12 We have checked by numerical simulations that an exact
discrete compact kink solution given by E&) can propa-
Finally the total equation becomes gate freely, that is without experiencing any discreteness ef-
5 fects for the parameter rang@< 7/3. From this value on,
M_ V3 (o — 371 2, & some discreteness effects appear owing to the fact that it is
gz ~LWns1=¢n)"= (Yn=thn-0)"]= Byn| ¥ Bl very difficult to describe a sine function only with three

(13)  points or two lattice spacingsee Fig. 2a)]. Figures 2a) and
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FIG. 2. Compact kinks propagation and shajage Spatiotempo- g- ’
ral evolution for a solution with discrete parametea= 7/2. (b) <
Spatiotemporal evolution for a solution with discrete parameter g
ka= /8. (c) Structure of the solution after a timg =20 (ex- &
pressed in arbitrary unifor discrete parametdea= 7/2. (d) Struc- §
ture of the solution after a timeg =20 (expressed in arbitrary unit E
for discrete parametdca= /8.
0 1 1 1 1 1
2(b) show the spatiotemporal dynamics of compactlike 0 10 0 3 40 50 60
kinks, respectively, foka= /2 andka= 7/8. time (arb. units)

One can remarkFig. 2(@) (discrete parametédra= 7/2)] ) . i )
that kink velocity decreases strongly with time until reaching /G- 3- (8 Creation of a discrete stationary breather with non-
a speed limit corresponding to a solution which is different tolinear oscillation background generated byKa K collision. The
the predicted one. This means that there exists other exae§0|llat|ons of the cgntral particle a_re asymmetric with an amplitude
compact solutions in such a system. Indeed, as shown in Fig¥n Max=2.1(see Fig. 1and a period's=0.7 (a.u.).(b) Breather
2(c), the profile of this numerical solution is also a compact-2MPlitude decreasing versus tirfia arbitrary uniy.
like solution of Eq.(13).

Unlike the very discrete case discussed previously, kinkively. First, in the discrete case the two entities travel with
compacton with discrete parametéia= /8 propagates velocity v,=0.478 cells 1 and —vy, respectively. As
freely, i.e., without emission of radiation, thus confirming theshown in Fig. 8a), a discrete stationary breather and small
exact character of solutiof®). Figure 2d) shows the profile amplitude nonlinear oscillations background emerge from

solution after a timet’ =20 (expressed in arbitrary unjts  the weakly inelasti-K collision. The asymmetric breather
This profile is identical to high accuracy to the initial condi- amplitude oscillationgsee Fig. 1 decrease slowly with time
tion. A systematic investigation of the velocity and the emis-[See Fig. &)]. Although the breather appears to be stable,
sion of radiation reveals that the critical value of parameteifier timet=60 (a.u.), the breather sink to chaotic oscilla-
ka over which a solution of typdS) radiates and conse- tions of small amplitude. Nevertheless, in spite of these weak
quently reduces its velocity isa= /3. nonlinear radiation lossesvhich propagate awaythis dis-
Note that this value of discrete parametea¢ 7/3) al-  crete breather has a significant lifetime and presents a genu-
ready corresponds to a very discrete situation, since the cofe physical interest. Note that the interaction between these
struction of the corresponding solution requires only thregwo compact entities is very different compared to the case
lattice spacings. of tanh-shaped or spatially extended solutions which interact
at long distances. Indeed, their collision may be compared to
B. Breather generation that of two hard spheres, i.e., without long distance interac-

We have also studied the possible generation of nonlinedf®n:
localized modes or compactlike breathers via kiigk and
antikink (K) collisions, respectively, in the discrete and con-
tinuous regime. This interesting type of nontopological exci-  As seen in Sec. Il, solutions of E¢L3) are strictly local-
tation appears in a large variety of nonlinear lattices and theifzeq sine functionsy,,= +sin(s) defined on intervalse
existence related to energy localizatip®—11]. Here, we [ _ 7/2 + /2], and =1 otherwise[see Fig. 2d)]. Taking
studied numerically &-K collision in the discrete Ka  into account the symmetry of these previous solutions, a
=m/3) and the continuous limitk@= 7/8) cases, respec- straightforward calculation shows that

IV. COMPACTLIKE PULSE SOLUTIONS
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FIG. 4. Pulse shape solutions of E{.3) Left: a bright type FIG. 6. Compactlike collision(a) Collision between two pulses

compactlike pulse, correspondingXe=0 in Eq.(16). Right: adark  in discrete regime: discrete paramekar= /3. (b) Collision be-
type compactlike pulse, correspondingXe-1 in Eq. (16). Both tween two pulses in the continuous limit: discrete paramkger

solutions have discrete paramekexr= /8. =7/8.
Yo=(—1) cogs), if se[—m, +m], and velocity, reveals that the critical value of the discrete
parameteka over which a solution of typ€l16) radiates or
Yo=(—1)M1,  otherwise (16) emits nonlinear oscillations ika< /3. Note that, from a
n ) )

numerical point of view, it is very important to describe cor-
rectly the horizontal asymptote on the pulse t{@genka
=/3). Indeed, nonlinear oscillations occur if this condition
is not respected. The specific cag®t shown herg corre-
sponding to a discrete parametes= /2, leads to an un-

Fig. 4b)]. Note that the pulses velocity is also given by Eq.fs’talble pulse, that ter_lds to widen alo_ng the propagation until
(15). Therefore, in the following, each pulse will be associ- it reaches a stable WIdth.IhIS pulse is then composed of two
ated with discrete parametka. complementary frontsK-K) as seen in Sec. ll[see Fig.
2(c)] and traveling in the same direction. The final width
after widening is equal to 17 lattice spacings. This effect
stems from the fact that it is very difficult to define a sine
A. Compactlike pulse propagation function and its horizontal asymptote with only three points

. . . or two lattice spacings. Therefore, to obtain and propagate
B o e o Compacike ufes s syste, i3 necessary o cene
for discrete parametdta< /3. As shown in Figs. @) and the solutu_)n on six lattice spacings at least, as well as define
5(b) the solutions propagate freely, that is without emissioncorrectly its horizontal asymptote.

of radiation or nonlinear oscillations. Likewise with the front

are also solutions of Eq13). The parametek is an integer
equal to zero or one. [K=0 the solution corresponds to a
bright type compactlike pulseee Fig. 4a)), and ifA =1 the
solution corresponds to a dark type compactlike plise

V. NUMERICAL RESULTS: PULSE DYNAMICS

dynamics, a systematic investigation of emission of radiation B. Compactiike pulse collisions
As in Sec. lll, we have investigated the collisions between
() (b) two pulses in the discrete regime and in the continuous limit.
) As shown in Fig. 6, in the two cases, the collision leads to a
10 localized mode, and to counter propagating compactlike
5 kinks [see Figs. @) and Gb)]. In the discrete regime this

mode is unstablgsee Fig. 6a)]. Indeed, its interaction with
the nonlinear oscillation background splits it in two modes
0 which move erratically and disappear in small amplitude
chaotic oscillations.
On the other hand, in the continuous lirfsee Fig. &)],
500 the generated mode is very stable in amplitude, time, and
position, and therefore presents a physical interest. More-
FIG. 5. (a) Pulse propagation for discrete parameter==/3  over, we have verified that two adjacent pulses spaced of two
(width: six lattice spacings (b) Pulse propagation for discrete pa- lattice spacing can propagate freely, that is without any in-
rameterka= 7/8 (width: eight lattice spacings teraction. A systematic study reveals that the discrete param-
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eter must be lower than/3. Indeed, for values higher than unstable in the discrete regime, but very stable in the con-
this critical value, any interactions occur between the twainuous limit, and consequently are able to play a role in
successive pulses because of the nonlinear oscillation bacghysical processes. We have also studied, but not presented,
ground that is generated during the propagation by the exhe propagation of two consecutive pulses spaced of two lat-

ceedingly discrete solutions. tice spacing and seen that no interaction between them oc-
curs if the discrete parametém is smaller than#/3. We
VI. CONCLUDING REMARKS would like to point out again that our model and results are

) . ) relevant for physical systems in which lattice discreteness is

We have explored the dynamics ot lattice model with  jmportant. Obviously, further studies are necessary especially
nonlinear coupl@ng interaction between nearest-neighbor aby including a linear coupling and a dissipative term, to de-
oms. We have first shown that by properly choosing the anagrmine all the properties of these compactlike kinks and
lytical form of a discrete solitary wave or compactlike solu- py|ses with exceptional mobilities. In conclusion, we believe
tion of the model we can calculate analytically the that the understanding of discrete nonlinear models is an
parameters of the* potential. The compactlike kink solu- active and attractive topic of the current research. Since re-
tions are sine Shaped and therefore StriCtly |Oca|ized, that |§||St|c physica| Systems are rather Compncated, it is ex-
without wings or tails. We have checked numerically thatiremely important to develop the basic concepts with help of
discrete compactlike kinkantikink) solutions can propagate simple lattice models with exact solutions.
freely without experiencing any discreteness effects if the
discrete parametésais lower or equal tor/3. Kink-antikink ACKNOWLEDGMENTS
collisions reveal that static breather with finite but with
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